
Refer: Free Online Course on Micro:bit in Hindi for school students:

https://kalateetkaushal.in/courses/micro:bit-in-hindi/

Instructor Guide
for teaching micro:bit to students in classes 9-12

https://kalateetkaushal.in/courses/microbit-in-hindi/

• This course guide assumes that students have a basic understanding of
Micro:bit - what is Micro:bit (a pocket computer), its input and output
features (buttons, LEDs, pins), and how to programme the Micro:bit.

• This course further assumes that students are familiar with MakeCode
for Micro:bit (interface, how to write simple code, and how to transfer
programmes to the Micro:bit).

• If students are NOT familiar with either of the above then it will be better
to do a few activities from the Micro:bit course meant for classes 6 to 8.

Basic Knowledge of Micro:bit

• In this course, students will learn about the sensors present onboard the
micro:bit and they will do 8 hands-on projects.

• In the process they will learn how, by using sensors and computers,
machines can be made autonomous i.e. capable of taking their own
decisions. For example, a fan has to be operated by an on-off switch,
but by adding a temperature sensor and Micro:bit, we can make it a
smart fan that switches itself on when the temperature rises.

• Students will also learn about fundamental programming concepts like
variables and conditional statements.

Course Introduction

On-board Sensors
SOUND SENSOR

SOUND SENSOR
- When the microphone on the

Micro:bit hears a sound, it sets a
number for how loud the sound
is.

- This number is the sound level
and it ranges from 0 (low sound)
to 255 (loud sound).

Sound Sensor Switch
Project-1

Objective: to help students understand sensor-based INPUT on the
Micro:bit using the onboard sound sensor (microphone).

Problem:

- Students should write code such that when the Micro:bit hears a
‘loud’ sound, a set of onboard LEDs should light up and when the
Micro:bit hears a ‘quiet’ sound only one centre LED should light
up.

- Students should understand how the MakeCode simulator works
to represent loud and quiet sounds.

- Students should transfer the code to Micro:bit and test their code
by clapping their hand or making some other loud sound and quiet
sound.

On the MakeCode Simulator, the Slider can be adjusted to depict different
sound levels. The value ranges from 0 to 255.

Extend the Problem: help students understand how to find out the
actual sound level in the classroom. They should further understand how
to change default threshold values for quiet and loud sounds in the code.

Problem:

- Students should find out the sound level in the classroom. For
this, they need to use Show Number and Sound Level blocks.

- Students should write code to define what threshold level is ‘quiet’
and ‘loud’ (the values can range from 0 to 255).

- Students should experiment what threshold level should be
defined as ‘loud’ keeping in view the average sound level in the
classroom.

1. Go to Input > scroll down

2. Drag out “Sound Level” block

3. Put this block inside “Show Number” block

4. Put the “Show Number - Sound Level”

inside Forever block.

5. Transfer code to Micro:bit. It now displays

the sound level in the classroom

Finding the Sound Level in the Classroom

1. Go to Input > More

2. Drag out “Set Loud Sound

Threshold to” block

3. Put this block inside “Start” block

4. Students should understand that

any instruction put inside the
“Start” block gets executed first
when the programme runs

Setting Threshold Level for
Loud and Quiet Sound

These values can range
between 0 and 255

On-board Sensors
TOUCH SENSOR

TOUCH SENSOR

- The logo on top of the
Micro:bit will detect your
touch.

- Four states detected by this
sensor are - Touched,
Pressed, Long Pressed, and
Released.

1. The Logo Pressed block can be found
under Input

2. The drop-down menu displays the four
touch sensor options

Touch Sensor Giggle
Project-2

Objective: help students understand how to use the touch sensor (logo).

Problem:

- Students should write code such that when the Micro:bit logo is
‘touched’ a heart icon gets displayed along with the sound effect
‘giggle’.

- Stretch the problem: when the Micro:bit logo is touched, the heart
icon should flash 3 times and the sound ‘giggle’ should play in the
background.

Giggle Sound on Logo Touched

1. In ‘Play Sound’ block, the drop-down
for ‘until done’ shows the other option
- ‘in background’

2. If you select ‘until done’ the complete
sound will play and only then the next
instruction will get executed.

3. If you select ‘in background’ the
sound will start to play and the next
instruction will get executed. This way,
while the heart is flashing, the sound
will also play in the background.

4. A ‘repeat’ loop can be used to make
the heart icon flash.

Flashing Heart & Background Sound

Using Pins as Touch Sensor

1. Pins 0, 1 and 2 on the Micro:bit can
also be used as a touch sensor

2. If you hold the GND pin with one
hand and touch pin 0, 1, or 2 with
the other, a very small (safe) amount
of electricity will flow through your
body and back into the Micro:bit
and a circuit will be complete.

3. This feature can be used to make
Pins 0, 1, and 2 behave like a touch
sensor

4. This works best if you use batteries
instead of the USB to power the
Micro:bit.

1. Students can write a simple programme to test Pins being used as a
touch sensor

2. In the simulator, the selected pin (0, 1, or 2) will need to be touched
and released to test the code.

Pin-0 as Touch Sensor

On-board Sensors
ACCELEROMETER

ACCELEROMETER SENSOR
- The accelerometer sensor

measures change in motion
(acceleration) in X, Y and Z axis.

- X-axis is left-right motion, Y-axis is
forward-backward motion, and Z-
axis is up-down motion.

- Motion in any of the axis is also
called a gesture like on-shake,
logo up, tilt right gestures.

1. Accelerometer sensor is in Input > On-Shake

2. Micro:bit can sense many gestures like shake, tilt, free fall, logo up or down

Electronic Dice
Project-3

Objective: use the accelerometer sensor (on-shake) to create an
electronic dice.

Problem:

- Students should write code such that each time the Micro:bit
is shaken, it generates a random number between 1 and 6
(like a dice).

To generate a random
number between 1 and 6,
students will need to use
the ‘Pick Random Number’
block, which is available
under the ‘Math' blocks

Every time the Micro:bit is
shaken, it will generate a
random number between 1
and 6 and display that
number

Electronic Dice

Stay Fit Step Counter
Project-4

FitBit

Electronic devices like the Fitbit and health apps
use the accelerometer sensor to tell us how much
exercise we are doing. In this project, we will use
the Micro:bit to make a Step Counter.

Objective: use the accelerometer sensor (on-shake) to create a Step Counter.

Problem:

- If we walk with a Micro:bit tied to our shoe, on every step the Micro:bit
will get shaken. Students need to use this property to create a Step
Counter that will keep track of the number of steps taken and on
pressing button-A it should show the total number of steps taken.

- Students will need a basic understanding of Variables.

In computer programming, a Variable is simply a location in the computer memory where
we store value of something that keeps changing when the programme runs. For example,
Score in a game is a variable because it keeps changing. Whereas Player Name is a
constant because it does not change when a programme is executed.

Micro:bit
Step Counter

Image Source: https://micro:bit.org/projects/make-it-code-it/sensitive-step-counter/

To keep track of the number of steps taken (on each shake event), we will need
to create a variable. Go to Variables > click Make a Variable > Type an
appropriate variable name e.g. Steps

Once a new variable is
created, new blocks will
appear under ‘Variables’ -
Set, Change, and the new
variable (in this case
‘Steps’).

Drag out the ‘Set Number’
block and ‘Steps’ variable.

From ‘Basic’ drag out an ‘On
Start’ block and put the ‘Set
Steps’ command inside ‘On
Start’ block.

This will ensure that whenever
our programme restarts, the
value of the variable called
‘Steps’ is set to 0.

From ‘Basic’ drag out ‘Show Number’ block and put the ‘Steps’ variable inside
‘Show Number’ block. This will confirm to the user that whenever the
programme starts or restarts, the value of the variable called ‘Steps’ is set to 0.

From ‘Input’ drag out an ‘On Shake’ event block and put the ‘Change Steps’
command inside ‘On Shake’. Set the value to 1. Now, whenever the micro:bit
gets shaken, the value of the variable called Steps will get incremented by 1.

From ‘Input’ drag out an ‘On button-A
Pressed’ event block.

From ‘Basic’ drag out a ‘Show Number’
block.

Put the variable ‘Steps’ inside ‘Show
Number’ command.

Now, after the micro:bit has been shaken a
few times, what is the total value of the
variable Steps can be known by pressing
button-A.

Our basic Micro:bit Step Counter is ready.
But we can make it look better.

From ‘Basic’ drag out a ‘Show LEDs’
command. Put it in the On Shake block,
under ‘Change Steps’ command.

Light up the appropriate LEDs to display
“+1”.

From ‘Basic’ drag out a ‘Clear Screen’
command. Put this below the ‘Show LEDs’
command.

Now, each time the micro:bit detects a
shake, it will display “+1” briefly.

Complete code for
Micro:bit Step Counter

Attach the 3 volt battery-pack
to the micro:bit and put both of
them inside your socks.

Whenever you take a step, the
micro:bit will detect a shape
and increment the variable
called Steps by 1.

You can see the total number
of steps you have taken by
pressing button-A

Musical Dice
Project-5

Objective: use the accelerometer sensor (on-shake) to create a musical
dice. This project requires basic knowledge of variables and If-Then
conditional statements.

Problem:

- Stretch the electronic dice project!

- Instead of showing numbers, on-shake the Micro:bit should

display equivalent number of LEDs (1 = 1 LED, 6 = 6 LEDs) and
also equivalent number of short beeps should sound.

STEP-1

In order to display the right
number of LEDs (equivalent
to the random number
generated) students will
need to create a variable
which is under Variables >
Make a Variable

STEP-2

Give the new variable an
appropriate name like
number, or random number

Once a new variable is
created, new blocks will
appear under ‘Variables’ -
Set, Change, and the new
variable (in this case
‘Number’).

STEP-3

Drag out the Set Number
block and Number variable.

Put the “pick random 1 and 6” block inside Set Number block

Thus, every time the Micro:bit is shaken, a random number between
1 and 6 will get generated and it will get saved under the variable
called Number (that we created).

We will also need If-Then-
Else conditional block and
“=“ comparison block. Both
are in ‘Logic’.

STEP-4

Drag out the If-Then-Else
and Equal-to blocks (we will
use these later)

Drag the If-Then-Else block below Set Number command and put the
Equal-to block where it say “true”

Drag the Number variable where it says “True”

STEP-5

Now, we want to start
checking what random
number gets generated
when the Micro:bit is
shaken. We first check if the
number generated (which is
stored in the variable called
number) = 1

STEP-6

If Number = 1 is ‘True’ then
we want to light up 1 LED

STEP-7

If Number = 1 is ‘True’ then we want
to light up 1 LED

AND

We want to make 1 short beep. For
this we need to drag out a ‘Play
Tone’ block from ‘Music’ and to keep
the duration of the beep very short,
we choose 1/4 beat (otherwise it will
take a long time for the beep to play).

STEP-8

To check more conditions, I.e. if
random number generated = 2,
we need to press the “+” button.

This will add a “Else If” statement.
We can more Else If statements,
simply press “+” again.

Right-Click > Duplicate and drag inside the Else-If statement and check if the
random number generated (and stored in the variable called Number) = 2

STEP-9
If Number = 2 is True, then we need to light up
two LEDs and we need to play the musical tone
twice (we can use Repeat command for this).

STEP-10
Click “+” to generate more Else-If statements, check if random number
generated is 3, 4, or 5 and light up equivalent LEDs and play equivalent
beeps (using Repeat).

For the last possibility, Number = 6, you can simply use the “Else”
command (and not Else-If). This is because the outcomes can only be 1,
2, 3, 4, 5, or 6. We have checked for 1 to 5 and if the outcome of the
shake is not one of these then the only possibility left is that random
number generated = 6. So we don’t have to check this condition. In the
“Else” block we can simply light up 6 LEDs and sound 6 beeps.

See the next page for complete code.

On-board Sensors
LIGHT SENSOR

LIGHT SENSOR

- The Micro:bit measures the light
around it by using some of the
onboard LEDs.

- Light level 0 means darkness
and 255 means bright light.

- The first time you the light sensor the

reading will say 0. After that, it will say the

real light level. This is because the light

sensor has to be turned on first.

Smart Street Light
Project-6

Objective: to learn about the light sensor and how it can be used.

Problem: use the light sensor to create a smart street light. When the
Sun is shining, the light sensor reading is high (200+) and when the Sun
sets the light sensor reading is low (less than 100). Use this property to
glow some onboard LEDs on the micro:bit when the light level is less
than 100. The onboard LEDs depict a street light which automatically
switches on when the sun sets and it starts to become dark.

This project requires basic knowledge of Variables and If-Then conditional statements.

Create a new variable and
give it an appropriate
name. Here, we are calling
our variable ‘Light
Intensity’

From ‘Basic’ drag out a ‘Forever’
block.

From ‘Variables’ drag out a ‘Set
Variable’ block and put it inside the
Forever block.

From ‘Input’ drag out ‘Light Level’
block and put it inside the Set Light
Intensity block.

Now, whatever is the level of light
falling on the micro:bit, it will get
updated and stored in the variable
called Light Intensity.

From ‘Logic’ drag out an ‘If-Then-Else’ block.

From Logic > Comparison >
drag out a ‘Less Than’
block.

Put it inside the If-Then
block (where it says ‘True’)

Let’s check the condition
needed for our Smart
Streetlight - that Light Level
falling on the micro:bit
should be less than 100.

If this condition is true,
which means Sun is setting
and it is getting dark, so we
want the streetlight to
switch on.

From ‘Basic’ drag out the
‘Show LEDs’ block. Light up
a few LEDs to depict a
street light.

Now, if it is getting dark and
the light level falling on the
micro:bit is less than 100,
this LED display will show.

The only other condition we want
to check is if the light level falling
on the micro:bit is more than
100.

So we only need to use the Else
condition (i.e. if the condition
“Light Level < 100” is NOT true).

In this case, we want the
streetlight to switch off. This is
depicted by none of the LEDs
lighting up.

In the simulator, if the light level (stored
in the variable called Light Intensity) is

less than 100, LEDs will glow.

In the simulator, if the light level (stored
in the variable called Light Intensity) is

more than 100, LEDs will not glow.

By using sensors, we can make machines ‘autonomous’ that is, machines that are
capable of taking decisions on their own. For example, in this case, we don’t have
to physically switch the streetlight on and off, based on the light sensor reading,
the streetlight will detect if it is becoming dark and switch on by itself.

On-board Sensors
TEMPERATURE SENSOR

TEMPERATURE SENSOR

- To find the temperature of its
surroundings, the micro:bit checks
how hot its processor chip is.

- Since this chip usually does get
very hot by itself, the temperature of
the CPU is usually close to the
temperature of wherever the
micro:bit is.

Smart Fan
Project-6

Objective: to learn about the temperature sensor present onboard the
Micro:bit and how it can be used.

Problem: use the temperature sensor to create a smart fan.

- When the room temperature rises over 21°C a mini servo attached to

the Micro:bit should start oscillating.

- To depict a fan, we are using a Continuous Servo motor instead of a

geared DC motor. This is because a geared DC motor draws more
current than what the Micro:bit outputs so you need to attach a
motor-driver board. For test purposes, one mini continuous servo can
be safely attached directly to the Micro:bit.

This project requires basic knowledge of Variables and If-Then conditional statements.

Create a new variable. Call it
Room Temperature.

Use the Set Variable command
and assign the temperature read
by the micro:bit (you will find this
under Input) to Room Temperature
variable.

Drag out a If-Then-Else
conditional and a Greater Than
block from Logic.

Check for the condition: Room
Temperature > 21

Temperature read by the
micro:bit (you will find

this under Input)

We need to add an Extension to get the programming blocks for a Servo motor.

For this, click the ‘gear’ icon on top right and then click on ‘Extensions’.

If you don’t see the Servo extension, you can search for it. Click on it to install.

Once you install the Servo
Extension, a new set of
blocks should appear.

Drag out ‘Continuous
Servo at P0 run at 50%’
block.

Set the Conditions
IF Room Temperature > 21
(is true) THEN rotate the
servo motor.

ELSE (which means if
Room Temperature is less
than or equal to 21°C)

Don’t rotate the servo
motor.

Your Smart Fan is Ready!
You have made a fan that is ‘autonomous’
i.e. it can take its own decision — if the
room temperature goes over 21°C it will
switch on. Else, it will be off.

On-board Sensors
COMPASS (Magnetometer Sensor)

Magnetometer / Compass
- The micro:bit measures the

compass heading from 0 to 359
degrees with its magnetometer
chip. Different numbers mean
north, east, south, and west.

- Every time you start to use the compass,
the micro:bit will calibrate the compass.
It will ask you to fill a pattern on the
screen by tilting the micro:bit.

Compass
Project-7

Objective: to learn how to use the Magnetometer sensor to use the
Micro:bit like a compass.

Problem: use the magnetometer sensor to find out magnetic North and
display “N” on the micro:bit when it is pointing to the North direction.

- When the Compass Reading is 90° it means that direction is North.

- Use the Compass Reading block and If-Then conditional statement to

make a simple compass that shows which direction is North.

This project requires basic knowledge of Variables and If-Then conditional statements.

Create a new variable. Call it
Compass Reading.

Use the Set Variable
command and assign the
Compass Heading reading on
the micro:bit (you will find this
under Input) to Compass
Reading variable.

Drag out a If-Then conditional
statement.

Check for the condition:
Compass Reading = 0°
(which means micro:bit is
pointing North).

Compass Heading block
(you will find this under Input)

You have made a simple
compass. Transfer the code
to micro:bit.

You will have to calibrate the
compass when you use it
for the first time.

When the micro:bit faces
North, the reading will be 0°
and “N” will get displayed.

You can fine-tune the
micro:bit compass by
mapping the
Compass Reading to
different directions
more accurately.

Here is how the
reading shown by
Compass Heading
block map to different
directions.

Better Compass!
See the final code

You can calibrate
the compass
anytime by using
the Calibrate
Compass block
inside Input >
More

MICROPET
Project-7

Objective: take an old toy or doll (or make your own) and use the
onboard sensors on micro:bit to make an interactive pet.

Problem: fix the micro:bit (with a battery pack) on a toy/doll. Code the
micro:bit such that the toy/doll behaves in an interactive say:

- On tilting the toy left or right, it should make different sounds and

display different icons

- On touching the logo, make a giggle sound (as if the toy/doll likes

being tickled).

- On pressing button-A, the toy/doll should say Hello and show a smily

face

- Use your imagination to create different interactions

Source: https://makecode.micro:bit.org/courses/csintro-educator

Micropet Examples

Sample Code
• On Logo Touched, the

Micropet giggles and
flashes the heart icon.

• On button-B pressed,
the Micropet makes a
happy sound and
shows a smily icon.

More Sample Code
• On button-A pressed, the Micropet says Hello and shows a smily face.

• On Free Fall (under On Shake), the Micropet plays a sad sound and shows an angry face.

• On Tilt Left and Tilt Right, the Micropet makes a yawning sound and shows a sleepy face.

• Use your imagination to create more interactions.

Hope you enjoyed making these projects
and in the process learnt more about the
world of sensors and pocket computers.

