
Analog Sensors
Instructor Guide

ARDUINO

www.TimelessLifeskills.org

http://www.TimelessLifeskills.org


PROJECTS

1. Flex Sensor to control Servo

2. Force Sensor to control Servo

3. MQ2 Smoke Sensor Alarm - Analog Pin Out

4. MQ2 Smoke Sensor - Digital Pin Out



Flex Sensor



The Flex sensor is essentially a 
variable resistor. 

As the sensor is flexed (bent), the 
resistance across the sensor 
increases.

Note that, as the flex sensor is 
bent, the range of resistance 
varies from 30 kilohm to 160 
kilohm.



If we connect the Flex Sensor 
directly to the Arduino (to an 
analog pin because flex sensor 
generates an analog signal not 
a digital signal), even when we 
bend the sensor, there is no 
change in voltage.


Hence, this is of no use to us 
because only when there is a 
change in voltage, as we bend 
the sensor, can we write a 
programme to do something 
with the sensor as it is bent. 



However, if we add a resistor 
in series with the flex sensor 
and then connect the flex 
sensor to the Arduino (from 
the middle of the flex sensor 
and resistor), we can generate 
a change in voltage that can 
be read by the Arduino using 
the in-built Analog to Digital 
Converter (ADC).



Since the range of resistance of 
the flex sensor is between 
30-160 kΩ (as we saw earlier), 
if we add a resistor that is 
somewhere in the middle of 
this, around 100 kΩ, the range 
of voltage generated by this 
circuit will be enough for the 
ADC in the Arduino to read. 

100 kΩ



In this circuit, the voltage 
change as we bend the flex 
sensor ranges from around 1 
volt to around 3 volt, a swing 
of 2 volt, which the Arduino 
ADC will be able to 
distinguish.


Now, we can write a 
programme where decision-
making can be done as the 
flex sensor is bent. For 
example, turn a servo, sound 
an alarm, or light a LED as 
the sensor is bent.



Summary: Voltage Divider
The Flex sensor is essentially a variable 
resistor. As the sensor is flexed (bent), 
the resistance across the sensor 
increases.


Devices like Arduino, that have an ADC 
(analog to digital converter), are good at 
detecting changes in voltage but not that 
good at detecting changes in resistance.


However, by adding another resistor to 
the flex sensor, in series, we can create a 
Voltage Divider. Then, by reading the 
change in the output of the voltage 
divider, we can write a programme that 
can do decision-making based on how 
much the flex sensor is being bent.



Image source: https://youtu.be/SIxfbKCXKbY 

Flex sensors can be used to 
create Robotic Arms. Flex 
sensors on a glove determine 
which finger you have bent and 
by how much and this triggers 
a set of servo motors in the 
robotic arm to move.

Robotic Arms are used in 
surgery, to perform dangerous 
operations like defusing a 
bomb, or to lift heavy objects.

Flex Sensor based Robotic Arm

https://youtu.be/SIxfbKCXKbY


Controlling a Servo with 
Flex Sensor
1. Connect one terminal of the flex 

sensor to Arduino 5V pin.

2. To the other terminal of the flex 

sensor, attach a resistor (between 
10-100 kΩ). You can experiment and 
see how many kΩ give you maximum 
range of output voltage.


3. Connect the other end of the resistor 
to Arduino GND pin.


4. From middle of the flex sensor and 
resistor, connect a wire that goes to 
one of the Analog pins of the Arduino 
(A5 in this case).


5. Connect the Servo as shown.



To find out the range of values 
generated by the ADC, as the 
flex sensor is bent, you use the 
Print to Serial Monitor 
command and Read the value 
of the Analog pin to which the 
flex sensor is connected (A5).



In this case, when the flex sensor is straight, the value generated is 787 and when it is bent 
the value generated is 389. We want to trigger some action, say turn a servo, when the flex 
sensor is around half-bent, i.e. the value is around 588. Let’s write the code for this. 





// C++ code 
// 
#include <Servo.h> 

Servo servo_7; 

void setup() 
{ 
  pinMode(A5, INPUT); 
  Serial.begin(9600); 
  servo_7.attach(7, 500, 2500); 
}

void loop() 
{ 
  Serial.println(analogRead(A5)); 
  delay(500); 
  if (analogRead(A5) < 588) { 
    servo_7.write(180); 
    delay(1000); 
  } else { 
    servo_7.write(0); 
    delay(1000); 
  } 
}

Arduino Code



Note: in the video example on the next slide, 
the resistor used is 10 kΩ and the value to 
trigger the servo has been changed to 100.





https://www.tinkercad.com/things/5fgBHGEZxbp  
Tinkercad Project Link:

https://www.tinkercad.com/things/5fgBHGEZxbp


Force 
Sensitive 
Sensor



Voltage Divider
The force sensitive sensor (FSR), also called 
pressure sensitive sensor, is essentially a 
variable resistor. As more pressure is applied on 
the sensor its resistance decreases.


Devices like Arduino, that have an ADC, are 
good at detecting changes in voltage but not 
that good at detecting changes in resistance.


However, by adding another resistor to the FSR, 
in series, we can create a Voltage Divider. Then, 
by reading the change in the output of the 
voltage divider, we can write a programme that 
can do decision-making based on how much 
the pressure is being applied on the sensor.

See the Flex Sensor slides for complete description of Voltage Dividers



// C++ code 

#include <Servo.h> 

void setup() 
{ 
  pinMode(A5, INPUT); 
  Serial.begin(9600); 
} 
void loop() 
{ 
  Serial.println(analogRead(A5)); 
  delay(500); 
}

Measuring Arduino Reading 
as pressure applied to the 
FSR is changed
Write this simple code to find out the Analog to 
Digital Converter (ADC) readings as you change 
the pressure on the FSR.


See the video on the next slide.


In this case, a reading of around 300 means a 
little pressure is being applied on the FSR, a 
reading of around 400 implies more pressure is 
being applied, and a reading of more than 500 
means a lot of pressure is being applied.


We can use these readings to write a Nested 
Conditional statement where as more pressure 
is applied the servo rotates more degrees.





Controlling a Servo with a 
Force Sensitive Sensor

1. Connect one terminal of the FSR to 
Arduino 5V pin.


2. To the other terminal of the FSR, 
attach a 10 kΩ resistor.


3. Connect the other end of the resistor 
to Arduino GND pin.


4. From middle of the FSR and resistor, 
connect a wire that goes to one of the 
Analog pins of the Arduino (A5 in this 
case).


5. Connect the Servo as shown.



Nested Conditional Statement 
to control the Servo
Since we know that based on the pressure applied 
to the FSR, the numbers generated by the Analog to 
Digital Converter (ADC) of the Arduino range from 0 
(no pressure) to 500 (a lot of pressure), we can make 
the servo turning to varying degrees by using a 
nested conditional command.


Here, we are saying that if the Reading on analog 
pin 5 is more than 400 (i.e. moderate pressure is 
being applied on the FSR), turn the servo to 90°


If the reading is more than 500 (i.e. a lot of pressure 
is being applied on the FSR), turn the servo to 180° 


If reading is less than 400, turn the servo to 0° 
(default position).



// C++ code 
// 
#include <Servo.h> 

Servo servo_7; 

void setup() 
{ 
  pinMode(A5, INPUT); 
  Serial.begin(9600); 
  servo_7.attach(7, 500, 2500); 
}

void loop() 
{ 
  Serial.println(analogRead(A5)); 
  delay(500); 
  if (analogRead(A5) >= 500) { 
    servo_7.write(180); 
    delay(2000); 
  } 
  if (analogRead(A5) >= 400) { 
    servo_7.write(90); 
    delay(2000); 
  } else { 
    servo_7.write(0); 
    delay(2000); 
  } 
}

Arduino Code





https://www.tinkercad.com/things/9MSurNn1fI9 
Tinkercad Project Link:

https://www.tinkercad.com/things/9MSurNn1fI9


MQ2 
Smoke 
Sensor



MQ2 sensor can detect smoke and inflammable gases like 
LPG, propane, hydrogen, methane, alcohol, and carbon 
monoxide concentration in the air. You can, for example, 
use this sensor to create a Fire Alarm.

The sensor is a metal oxide semi-conductor and its 
resistance changes when exposed to gases.

The sensor has an analog out (AO) and a digital out (DO). 
The analog output voltage varies in relation to the 
concentration of smoke or inflammable gases - higher the 
concentration, higher the output voltage and vice-versa. 

This analog signal is digitised and it output on the DO pin. 
DO pin is low when gas concentration is above the 
threshold value and high otherwise. If you use the DO pin, 
you can adjust the sensitivity of the sensor by using the 
onboard potentiometer.

Analog 
Out

Digital 
Out

Potentiometer



DO Out 
LED

Power 
LED

The Power LED lights up when the sensor is turned on 
and the DO Out or status LED lights up when the gas 
concentration exceeds the threshold value (while using the 
digital pin).

To get accurate reading from the sensor, you have to 
preheat the sensor for 24 hours (since it is a heat-based 
sensor). 

However, if you are just testing the sensor to learn how it 
works, you can use it without pre-heating (in this  
case, reading value will not be accurate but the logic will 
work).

If want to make a real smoke or gas alarm, you must pre-
heat the sensor and calibrate it.



MQ2 
Smoke Sensor 
Analog Reading



Analog Out

Analog Pin (AO) - Circuit Diagram



MQ Sensor with LED
Add a LED 

- Connect LED anode (+) 
to pin 6 


- Connect LED cathode 
(-) to a 200 Ω resistor 
and to Arduino ground


- When no smoke is 
detected, green LED 
will light up


- When smoke is 
detected, LED will be 
off and alarm will sound



MQ Sensor with LED and Buzzer
Add a Buzzer 

- Connect buzzer anode (+) 
to pin 5


- Connect buzzer cathode 
(-) to Arduino ground


- When no smoke is 
detected, buzzer will be 
off (LED will light up)


- When smoke is detected, 
buzzer will be on (LED 
will be off)



To get accurate reading from the sensor, you 
should preheat the sensor for 24 hours.

Here, we are just testing the sensor to learn 
how it works, without properly heating and 
calibrating it. 

Even so, we have to give some time to the 
sensor to stabilise, hence we have added a 5 
second wait.

This number is 
based on the 
threshold reading 
you will get when 
smoke is detected



void loop() 
{ 
  Smoke = analogRead(A0); 
  if (Smoke > 420) { 
    digitalWrite(5, HIGH); 
    digitalWrite(6, LOW); 
    Serial.println(Smoke); 
    Serial.println("Smoke Detected"); 
    delay(1000);  
 } else { 
    digitalWrite(5, LOW); 
    digitalWrite(6, HIGH); 
    Serial.println(Smoke); 
    Serial.println("No Smoke"); 
    delay(1000); 
  } 
}

// C++ code 
// 
int Smoke = 0; 
void setup() 
{ 
  Serial.begin(9600); 
  pinMode(A0, INPUT); 
  pinMode(5, OUTPUT); 
  pinMode(6, OUTPUT); 
  Serial.println("Wait 5 
seconds. Sensor is warming 
up."); 
  delay(5000); 
}

Arduino Code





MQ2 
Smoke Sensor 
Digital Reading



Digital Pin (DO) - Circuit Diagram



How to calibrate the MQ2 sensor for Digital Reading

1. Turn the potentiometer clockwise a few turns

2. Put the sensor in a smoky environment (like light an 

incense stick to generate smoke)

3. Turn the potentiometer anticlockwise till the DO OUT LED 

(status LED) lights up

4. Then turn the potentiometer clockwise just a little till the 

status LED is off

5. Now the sensor is calibrated to detect smoke

6. If you use the sensor after a long break, you will need to 

calibrate the sensor again

7. Video in the next slide demonstrates this process  





1. We are reading digital pin 7, to 
which the DO pin of the MQ2 
sensor is connected


2. DO pin stays HIGH when there is 
no smoke and becomes LOW 
when smoke is detected


3. Hence, in our code the 
conditional statement is “If Read 
Digital Pin 7 = 0” (i.e. DO pin is 
LOW), message displayed is 
“Smoke Detected”


4. Else (which would imply DO Pin 7 
is HIGH), message displayed is 
“No Smoke”



// C++ code 

void setup() 
{ 
  Serial.begin(9600); 
  pinMode(7, INPUT); 

  Serial.println("Wait 5 
seconds. Sensor is warming 
up."); 
  delay(5000); 
}

void loop() 
{ 
  if (digitalRead(7) == 0) { 
    Serial.println("Smoke Detected"); 
    delay(1000); 
  } else { 
    Serial.println("No Smoke"); 
    delay(1000); 
  } 
} 

Arduino Code




