

ARDUINO L298N Motor Driver Board Instructor Guide

L298N Motor Driver Board

Controlling Direction (clockwise and counter-clockwise motion) of two DC Motors

L298N Motor Driver Board

- Geared DC Motors need high current, around 200 mA with no load
- Arduino outputs max 40 mA current
- You cannot connect geared DC motors directly to an Arduino
- You need a Motor Driver board. L298N is a relatively cheap board (Rs 250)
- Motor Driver board converts low current input signal from a microbit into a high current signal to run different types of motors
- With L298N Motor Driver board, you can control both the direction (H-Bridge) and speed of a motor

Wiring Option-1

You will need to supply voltage to the Arduino board and to the L298N board.

Voltage jumper is in place.

fritzing

• GND of Arduino and GND of L298N are connected

Tinkercad Code

Arduino Code

```
// C++ code
void setup()
{
  pinMode(5, OUTPUT);
  pinMode(6, OUTPUT);
  pinMode(10, OUTPUT);
  pinMode(11, OUTPUT);
}
void loop()
{
  digitalWrite(5, HIGH);
  digitalWrite(6, LOW);
  digitalWrite(10, HIGH);
  digitalWrite(11, LOW);
  delay(2000);
```

digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); delay(1000); // Wait for 3000 millisecond(s) digitalWrite(5, LOW); digitalWrite(6, HIGH); digitalWrite(10, LOW); digitalWrite(11, HIGH); delay(2000); // Wait for 3000 millisecond(s) digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); delay(1000); // Wait for 2000 millisecond(s) }

Wiring Option-2

Arduino Board is NOT connected to USB. It is getting voltage supply from L298N Board, from the 5V out pin.

Voltage jumper is in place.

fritzing

s not

Inr

Voltage jumper in place

Arduino is connected

- Arduino is NOT connected with the USB and Voltage jumper is in place
- GND of Arduino and GND of L298N are connected

_298N board

Tinkercad Code

Arduino Code

```
// C++ code
void setup()
{
  pinMode(5, OUTPUT);
  pinMode(6, OUTPUT);
  pinMode(10, OUTPUT);
  pinMode(11, OUTPUT);
}
void loop()
{
  digitalWrite(5, HIGH);
  digitalWrite(6, LOW);
  digitalWrite(10, HIGH);
  digitalWrite(11, LOW);
  delay(2000);
```

digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); delay(1000); // Wait for 3000 millisecond(s) digitalWrite(5, LOW); digitalWrite(6, HIGH); digitalWrite(10, LOW); digitalWrite(11, HIGH); delay(2000); // Wait for 3000 millisecond(s) digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(10, LOW); digitalWrite(11, LOW); delay(1000); // Wait for 2000 millisecond(s) }

L298N Motor Driver Board

Controlling the Speed of two DC Motors (required for turning a vehicle left or right to different degrees)

Controlling Speed

- Both Enable jumpers are disconnected.
- Enable pins are connected to Arduino.
- Voltage jumper is in place.
- Arduino voltage supply can be from the L298N board, or Arduino can have its own supply.

Both Enable Pin Jumpers are disconnected.

Enable pins are connected to Arduino pins.

Arduino Code

```
// C++ code
//
void setup()
{
    pinMode(3, OUTPUT);
    pinMode(9, OUTPUT);
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
    pinMode(10, OUTPUT);
    pinMode(11, OUTPUT);
    pinMode(11, OUTPUT);
    pinMode(11, OUTPUT);
}
Enable
Pins
need to
be HIGH
}
```

void loop()

```
{
                         To change speed, vary the values
  analogWrite(5, 50);
                         from 0 (stop) to 255 (max speed)
  analogWrite(6, 0);
  analogWrite(10, 50);
  analogWrite(11, 0);
  delay(2000); // Wait for 2000 millisecond(s)
  analogWrite(5, 0);
  analogWrite(6, 0);
  analogWrite(10, 0);
  analogWrite(11, 0);
  delay(2000); // Wait for 2000 millisecond(s)
  analogWrite(5, 0);
  analogWrite(6, 200);
  analogWrite(10, 0);
  analogWrite(11, 200);
  delay(2000); // Wait for 2000 millisecond(s)
  analogWrite(5, 0);
  analogWrite(6, 0);
  analogWrite(10, 0);
  analogWrite(11, 0);
  delay(2000); // Wait for 2000 millisecond(s)
}
```

Turning a Vehicle

void loop()

```
{
    analogWrite(5, 100);
    analogWrite(6, 0);
    analogWrite(10, 50);
    analogWrite(11, 0);
    delay(2000);
```

By varying the speed of the two motors, you can turn the vehicle left or right, at different angles.

Speed of one motor at X and speed of the second motor at 0 will turn the vehicle 360° in one direction

